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Accurate Analysis of Coupled Strip-Finline
Structure for Phase Constant, Characteristic

Impedance, Dielectric and Conductor
Losses

D. MIRSHEKAR-SYAHKAL AND J. BRIAN DAVIES, MEMBER, IEEE.

Abstract — Propagation constant, characteristic impedance, dielectric

loss, and conductor loss of coupled strip-unilateral firdine is here computed

for the first time. The technique of analysis is based on the assumption of

hybrid wave propagation implemented through the spectral domain ap-

proach for the phase constant. A perturbation method together with the

spectral analysis has been applied to find the losses. The basis functions

used to approximate fields within unilateral fhdine gap and currents on the

strip have been selected as Legendre polynomials for the unbounded field

or current and trigonometric functions for bounded field or current. The

Green’s function matrix in the spectral domain for the two distinct planes
of the coupled strip-unilateral firdine has also been presented. This gives

the opportunity for direct implementation in the analysis of other similar

structures. The possibility of the extension of the technique to shielded

stratified dielectric with distributed planar conductor witbin different layers

has been also discussed.

I. INTRODUCTION

I N SPITE OF considerable usage of coupled strip-un-

ilateral finline, Fig. 1(a), in microwave integrated cir-

cuits, particularly at millimeter band, no account of phase

constant, characteristic impedance, or dielectric and con-

ductor losses has been so far given for this structure.

However, a few authors have solved the problem of cou-

pled microstrip-slotline which has similarity to strip-finline

,structure [1 ]–[3], but in these works either the effect of

sidewalls is neglected or the role of imperfection in dielec-

tric and conductors on the field strength is ignored. In this

paper, a rigorous hybrid mode solution based on the

spectral domain’ technique is presented for strip-finline

structure. From this an explicit form of [G] matrix, similar

to that given in [4] and used in [5] for other finline

structures is presented. This’ matrix, due to the increase of

one layer of conductor to its previous distribution shown in

[4], has the order 4. Generally speaking, the increase of
every one conductor layer corresponds to an increase of

two to the order of [G], Fig. 1(c). Therefore, a multi-dielec-

tric layer structure with four different conductor layers

would have a [G] matrix of the order 8. It was found, out

of 16 elements of [G] matrix of structures with two-layer

conductors embodied in three dielectric regions, Fig. l(b),
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Fig. 1. (a) Coupled microstrip-unilateral finline. (b) Two-layer arbi-
trarily distributed strip structure. (c) Multilayer dielectric and strip
structure.

that only 9 of them are independent. Obviously, this matrix

degenerates into a [G] matrix of slot or strip or their

suspended versions [6], depending upon the geometry of

the configuration of the line. This point becomes valuable

when the technique is to be checked against other well-

established programs of rnicrostrip and slot line.

As far as the basis functions for approximation of field

and current are concerned, those given in [1], [3] for

microstrip-slot lines may be used for the simplest solution:

the zeroth-order solution. However, this choice is limited to

those coupled strip-finlines whose strip and slot width are

very small compared with the shield width. Furthermore,

higher order modes cannot be predicted by the mentioned

basis functions. A general form of basis functions satisfy-

ing the edge condition explicitly for unbounded fields and

currents is presented in [2]. Unfortunately, this explicit

treatment of the edges does not permit the normal per-

turbation analysis of conductor loss [5]. Therefore, to fulfill

the requirements of conductor loss, as well as dispersion

calculations, Legendre polynomials are again [5], [7] chosen

to approximate the unbounded field or current. For the

bounded field and current, trigonometric functions have

been taken as basis functions. Losses for strip-finline struc-

ture are evaluated through a perturbation technique intro-

duced in [5], [6], [7]. Accuracy of the results depends upon

the low dielectric loss tangent and the high conductivity of

metal.
The definitions of characteristic impedances adopted are
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current-power relation for the microstrip mode and volt-

age–power relation for the slot mode. These were found

earlier [6] to be most appropriate for the quasi-TEM and

quasi-waveguide modes, respectively. However, these defi-

nitions are not unique because of the mixed dielectric

structure.

II. THEORY

Consider Fig. l(b) showing a shielded three-layer dielec-

tric structure in which two planes of distributed conductors

are arranged as desired. Therefore, coupled strip-finline

structure, Fig. l(a), emerges as a subclass of Fig. l(b). For

the sake of brevity, since the method of analysis assumes

hybrid wave propagation through the structure, imple-

mented via the spectral domain approach to obtain the

phase constant, the general treatment presented by the

authors in [4], [6], [7] is considered as the basis of analysis.

In [4], [6] all the scalar potential functions, their trans-

formed forms, and the boundary conditions are clearly

stated. The only difference in the new configuration, Fig.

l(b), is the second layer of conductors. Following the same

procedure as in [4], [6], after eliminating ~he unnecessary-.
unknown parameters and retaining only EX, ~, E=, ~, EX, ~,

E ~,~, ~,h, ~,h, ~%d, and ~z<~ the [G] matrix relating these

fields and currents is given as

I
–Gt,4 –G,,3 1 G,,2 G,,, ~.h
–G,,3 –G,,3 ; G2,2 G,,2 jx,h
— =

@2- - ‘G;,2-; ‘G;,; - ‘&; &
G 1.1 GI,2 I h –% E,, d

Ez~

Ex,h

~d

~,d

(1)

Elements of [Gl have been introduced in. the Appendix. As

seen from [G] ;n (1) only 9 elements are ind;p_endent. In

(1) ~,h, ~,h~ ‘z,h! and fi.x,h-are currents and fields at y = h

while L, o J., d} Z,, d, ahd E., d are the same parameters at
y=h+8. - denotes that all the fields and currents are in

the Fourier domain. As (1) is written for a two-layer

conductor structure, it is reduced to simpler forms, like in

[4], [6], if either h = O or d = O or the strip or fins disap-

pear.

At this stage, it is worthwhile examining the possibility

of the extension of the method to stratified dielectric with

multilayer strip, Fig. l(c). In fact by using the transfer

matrix [4] it is always possible to relate the fields coeffi-

cients of one dielectric layer adjacent to one arbitrary strip

layer to the nearest dielectric region next to the subsequent

strip layer. Thus if the procedure is continued for all the

layers of dielectric media and the boundary conditions at

each conductor layers are also applied, the final result in

terms of all the unknown fields and currents of all conduc-

tor interfaces can be represented through a matrix relation

like (l). Clearly, the, order of the associated [G] matrix is

two times the number of planes containing conducting

strips.

Relation (1) can be converted into a linear system of

homogeneous equations by choosing first a set of basis

functions for EX, ~, E,, d, ~x,h, and ~, ~. This set for coupled
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strip-unilateral finline is given as follows:

J;, hor E;d= ~ a~sin(mmx/w), lX1 <W’ (2)
Wl=l

~,~ or E;, d= ~ b~Pz(~_l)(x/w), [Xl<w (3)
“=1

P

E~Jor.l:,h = ~ cPcos(2p – l)x/w’, Ixl<w’ (4)
~=1

In the above relations, superscripts o and e represent odd

and even modes of the coupled strip-unilateral finline

structure. In (2)–(5), w and w’ are given by

W=W2

)
, for the odd mode

w/ = w, (6)

W=w,

I
, for the even mode.

w’= W2 (7)

In the transformation of the basis function, one should be

careful to observe that for the even mode (microstrip mode

with a magnetic wall plane of symmetry), the spectrum

parameter a,, is

an = (n +1/2)r/a, ~=(),l,z,... (8)

and the same parameter for the odd mode (finline mode),

is given by [5]

a.=n7r/a, n= Ci,1,2, . . . . (9)

Substituting the transformed version of (2)-($ into (1) and

applying Galerkin’s method and Parseval’s identity, the

final set of linear homogeneotts equations, very similar to

those previously derived for microstrip and so on [6]-[9],

results, The nontrivial solution of this system gives the

phase constant and consequently all the fields in the Four-

ier or space domain.

A. Dielectric Loss

A perturbation method developed for small loss dielec-

trics in multilayer planar structures [6], [7] can be directly

applied to the coupled strip finline structure or in general

to any substructure of Fig. l(c). ” The attenuation at

frequency o due to dielectric layers, each having a loss

tangent of tan 8, and a cross section of S,, can be given by
[6], [7]

c&tana,J@l’&
1ad =

J./

(lo)

2 Re i. X H; d?
s

where

i, S, EO, and Ho

are the dielectric index, the whole cross section, and the

unperturbed fields given by the spectral domain approach.
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B. Conductor Loss

For attenuation due to conductor loss for good conduc-

tors, the following conventional formula derived by a per-

turbation technique is given [7]

(11)

where R, is the surface resistance and Hr is the magnetic

tangent field around the conductors for the lossless case.

However, in (11), near the edge of any infinitely thin

conductor, Hr for the lossless case becomes unbounded and

the integral ceases to exist. This situation occurs in the

analysis of all planar structures of Fig. 1(a), (b), (c), with

the assumption of negligible strip thickness [5]. This diffi-

culty has been overcome by using bounded basis functions

in (3) and (5), and the rationale is described in [5]. To

achieve accuracy with (11 ), the following inequality should

be considered

skin depth < strip thickness K dielectric thickness.

For further information, different comparative studies have

been carried out between aC from (11) and those analyti-

cally available in [5].

C. Characteristic Impedance

Since a unique and general definition of characteristic

impedance for the structure of Fig. 1(c) is not available at

high frequencies, for the sake of definiteness, the following

two definitions are given for coupled strip-unilateral finline

structure

20= V2\P for slot mode (12)

Z== P\12 for microstrip mode (13)

where V and 1 are integrations of Ex across the slot and .lZ

over the strip, respectively, and P is the transmitted power.

III. NUMERICAL RESULTS

The implementation of all the above expressions in a

computer program gives the opportunity of fast and accu-

rate analysis of coupled strip-unilateral finlines.

The first example treated by the program is, however,

aimed to check whether [G] in (1) properly degenerates

into [G] of microstrip or slot line. For this purpose, a
shielded coupled strip-slot has been analyzed and the re-

sults of even and odd modes for different values of w, and

W2 have been shown in Fig. 2. As noticed in the figure,

when WI approaches zero for the odd mode and W2 ap-

proaches a for the even mode, the normalized phase con-

stants approach phase constants of shielded slot and sus-

pended microstrip lines, respectively. Results for shielded

slot and shielded suspended rnicrostrip were obtained from

[6] and [10], respectively, where in turn they had been

checked against [11 ].

In the second example, which is a coupled strip-

unilateral finline built in W~-22 waveguide, Fig. l(a), not

only the normalized wavelengths for the even and odd

modes are given but also the associated characteristic im-

Ei!i5E2W2 4,~ m
s
g

m .
WI 4.5 Pm

I
“=2W:

cr=9 , 35

/1

Odd mode(wp=hnm)

~’ “t 3

Even mode(wl”lm)

2

---Shielded slot line,wi. o {G]

I Ill I‘“-” Shielded SUSP. striP>w2=lo ~m{IO}

~1
3 5 7 Freq. (GHz) 11

Fig. 2 Even and odd mode propagation characteristics of shielded

microstrip-slot line and their asymptotic approaches to shielded sus-
pended mlcrostrip for the even mode and to shielded slot line for the
odd mode.

pedances and losses are computed. Furthermore, for the

even mode solution, all the parameters obtained near the

two limits

w2=aandw2=0

are compared with those computed for microstrip by [10].

The same type of comparison is also made between the odd

mode solution and unilateral finline. Figs. 3 and 4 illustrate

the conclusions of the computations for the coupled strip-

unilateral finline structure at frequencies ~ = 27 GHz and

~= 40 GHz and their comparisons for near limiting condi-

tions with microstrip [IO], suspended microstrip [10] and

unilateral finline [5]. From Fig. 3(a) and (b) showing

A /XO, 2<, aC, and ad for the even mode, it is concluded

that 2,, ad, and A/A o smoothly approach those of micro-

strip or suspended rnicrostrip as W2-0 or Wz+ a, respec-

tively. We note that ac near both limits is significantly

larger than that of microstrip, especially as W2+ a.

In the case of the narrowing slot (W2 ~ O), there will be

(for the loss-free case) singularities of field near the two

conductor edges that are absent when the slot is absent. In

the case of the fins almost vanishing ( Wz+ a), this is

believed to be a computational artifact, due to the choice

of formulation in the plane y = h in terms of electric fields

over the slot rather than in terms of conduction current
over the fins. Experience [6] has shown this to be the best

choice when the slot is smaller than the fin width, which is

naturally the region of most practical interest.

Fig. 4(a) and (b) for the odd mode display that there is
good agreement between aC, ad, 20, and A/A ~ of strip-

unilateral finline structure and the values of unilateral

finline [5] as the slot becomes larger. The agreement is

good for Wz>1.2 mm, meaning that the strip is not very
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Fig. 3. Even mode parameters of microstnp-urrilateral finline built in
WG-22 waveguide (Fig. l(a)) with a = 1.778 mm, h = d = 3.4925 mm,
8=0.127 mm, w, =0.2 mm, (,=2.22 mm, tan3, =2X10-4, and p=3
x 10– 8 Q. m. (a) Characteristic impedance 2, and conductor loss aC.

(b) Normalized wavelength A /AO and dielectric loss ad.

effective for this range of W2. This, however, is understan-

dable because in contrast to the “TEM limit mode,” for

the odd mode with Wz chosen very large, the energy does

not concentrate about the strip and, therefore, removing

the strip would continuously convert the problem to un-

ilateral finline.

With regard to the computation time, it is of the order of

6sonan IBM360/65if J4=N=P=Q=3 in(2) to(5).

This corresponds to around 0.1 percent accuracy in calcu-

lation of the phase constant.

IV. CONCLUSION

Coupled strip-unilateral finline structures have been

analyzed for propagation constant, characteristic imped-

ance, dielectric loss, and conductor loss. The techniques
used were the spectral domain hybrid mode analysis to

obtain the phase constant and field components for the

lossless case, and a perturbation method to determine the

dielectric and conductor losses.

Rigorous expansions for the loss-free structure are in

terms of the surface currents on the strip together with the

electric fields in the finline plane. Concerning the basis

functions, they were taken to be trigonometric functions

for the “bounded field or current, and Legendre poly-
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Fig. 4, Odd mode parameters of the microstrip-unilateral finline

described in Fig. 3. (a) Characteristic impedance ZO and conductor loss
a,. (b) Normalized wavelength A/A. and dielectric loss ad.

nomials for unbounded field or current. The latter choice

is, however, advantageous in calculation of conductor loss.

Two examples were treated by the developed method. The

first one was used merely for comparison with well-estab-

lished results of shielded slot and shielded suspended mi-

crostrip. The second example, being more realistic, was a

coupled strip-unilateral finline built within WG-22 wave-

guide. In this structure, however, at the appropriate limits

very good agreement between the computed parameters

and those of microstrip, suspended microstrip, and, un-

ilateral finline was clearly seen. Since the Green’s function

matrix in the Fourier domain, [G], of the mentioned struc-

ture can be used directly for similar cases, its elements have

been explicitly given. The manner of the extension of the

technique to a general planar structure with multilayer of

dielectric and multilayer of conductor was also discussed.
Efficiency of the numerical computation is very high and

advantage has been taken of the detailed study carried out
in [6] for the choice of [G] matrix and of basis function,

which strongly influences the computing time.

APPENDIX

Elements of [G] in (1) are given as follows:

Gm.n =G; ,n/D, m,n=l,2,3,4.

G;,, =~2(l+tf,2tC)/cosh (y2,,,8)
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and

G{,2 = a#3k~,2tC/cosh(y@)

Gj, s=a.B3~(l +k;y2, ntC)

(,, )G~,4= –fizt k; ~+k;k;fiy;atC

G;,z =#2(1 + t;,ltC)/cosh(y2, #)

Gj,~ = –~2t(k;, a+ k;k;, &y;, ntC)

G;,l= –~(E–anc’D)

G;,z =c’k; ~D+B

G:,l =~2F– c’k: ~D

t = tanh(y2, #)/uE2Y2, ~

c=coth(yl, /t)/@ PiYl, n

tc=t. c

c’=coth(y3, #)/@PsYs,.
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D= B2{l+(k;y?,.+k;y;,.)t.+(k,kzy,,nyz,ntc)2}
k,z = Uzpici, fori=l,2,3

712= ~2/P2

TC= ctz

c,= c2t

11~j = a;k; + ~k; – k;k; fori, j=l,2

k; fi=k; -~z, fori= 1,2,3

k;a=k; –a2, fori=l ,2,3

k;z=k; –k~

Yj, n2 =a:+flz -k;, fori=l,2,3.

In the above

bolic functions
counterparts.

expressions, when yi~. <O, all the hyper-

must be replaced by their trigonometric

ACKNOWLEDGMENT

This work was supported by Philips Research Laborato-

ries, Redhill, England, in connection with a program

sponsored by D. C. V. D., Procurement Executive, Ministry

of Defence, England.

REFERENCES

[1] H. Ogawa and M. Aikawa, “Analysis of coupled microstrip-slot
lines,” Electron. Conrmun. Japan, vol. J62-B, pp. 396–403, Apr.
1979,

[2] K. Sachse and J. Citerne, “Frequency dependent solution of sus-
pended microstnp line with tuning septums,” Electron. Lett., vol.
16, no. 7, pp. 264-266, Mar. 1980.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

T. Itoh, “ Spectraf domain emmittattce approach for dispersion
characteristics of generalized printed transmission lines,” IEEE

Trans. Microwave Theoty Tech., vol. MT’1-28, pp. 733–7363 July
1980.
J. B. Davies and D. Mirshekar-Syahkal, “Spectral domain solution
of arbitrary coplanar transmission line with multilayer substrate,”
IEEE Trans. Microwave Theo~ Tech., vol. MTT-25, pp. 143– 146,
Feb. 1977.
D. Mirshekar-Syahkaf and J, B. Davies, “An accurate, unified

solution of various fin-line structures, of phase constant, character-

istic impedance and attenuation,” unpublished,

D. Mirshekar-Syahkal, “Analysis of uniform and tapered transmis-

sion lines for microwave integrated circuits,” Ph.D. dissertation,
Univ. of London, London, England, 1979.
D, Mirshekar-Syahkal and J. B. Davies, “Accurate solution of

microstrip and coplanar structures for dispersion and for dielectric
and conductor losses,” IEEE Trans. Microwave Theoiy Tech., vol.
MTT-27, pp. 694-699, July 1979.

T. Itoh and L. Schmidt, “Characteristics of generafised fin-line for
millimeter-wave integrated circuits,” in Znt. U. R. S. Z. SYmP. of
Electromagnetic Waves, Munich, Germany, Aug. 26-281980.
T. Itoh and R. Mittra, “A technique for computing dispersion
characteristics of shielded microstrip lines,” IEEE Trans. Micro-

wave Theory Tech., vol. MTT-22, pp. 889–891, Oct. 1974.
D. Mirshekar-Syahkal and J. B. Davies, “ Computation of the
shielded microstnp parameters in suspended and conventional
form,” IEEE Trans. Microwave Theoiy Tech., vol. MTT-28, pp.

274-275, Mar. 1980.

E. Yamashita and K. Atsuki, “Analysis of microstrip-like transmis-
. ...— ——

sion lines by nonuniform discretization of integral equation,” IEfiH
Trans. Microwave Theorv Tech.. vol. MTT-24, pp. 195–200, Apr.
1976.

*

D. Mirshekar-Syahkal was born in Tehran, Iran,
in 1951. He received the B,Sc. degree in electrical
engineering from Tehran University, Iran in 1974,
the M. SC. degree in microwaves and modern
optics from University College, London, Eng-
land, in 1975, and the Ph.D. degree in electrical
engineering in 1979.

Since 1979, he has been Research Associate at
University College, London, England, where he
has been working on millimeter-band planar

transmission lines and on nondestructive recogni-

tion and evacuation of fatigue cracks in metaf by electromagnetic tech-
niques.

+

J. Brian Davies (M73) was born in Liverpool,
England in 1932. From Jesus College, Cam-
bridge, England, he received the degree in
mathematics in 1955. From the University of

London, England, he received the M, SC. degree
in mathematics, the Ph.D. degree in mathemati-

cal physics, and the D. Sc. (Eng.) degree in en-

gineering in 1957, 1960, and 1980, respectively.
From 1955 to 1963, he worked at the Mullard

Research Laboratones, Saffords, Surrey, Eng-
. . . . .

land, except for two years spent at unrversny
College, London, England. In 1963, he joined the staff of the Department
of Electrical Engineering, University of Sheffield, England. Since 1967, he
has been on the staff at University College, London, where he is Reader
in Electrical Engineering. From 1971 to 1972, he was a Visiting Scientist
at the Nationaf Bureau of Standards, Boulder, CO. His research work has
been with problems of electromagnetic theory, especially those requiring
computer methods of solution, but recently has extended into field
problems in acoustic microscopy.

Dr. Davies is a member of the Institution of Electrical Engineers,
London, England,


